Automatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network
نویسندگان
چکیده مقاله:
Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study was to provide an automated method for segmenting the tumor and intratumoral areas. Methods: This is a fundamental-applied study that was conducted from May 2020 to September 2021 using multimodal MRI images of 285 patients with glioma tumors from the BraTS 2018 Database. This database was collected from 19 different MRI imaging centers, including multimodal MRI images of 210 HGG patients, and 75 LGG patients. In this study, a 2D U-Net architecture was designed with a patch-based method for training, which comprises an encoding path for feature extraction and a symmetrical decoding path. The training of this network was performed in three separate stages, using data from high-grade gliomas (HGG), and low-grade gliomas (LGG), and combining two groups of 210, 75, and 220 patients, respectively. Results: The proposed model estimated the Dice Similarity Coefficient (DSC) results in HGG datasets 0.85, 0.85, 0.77, LGG datasets 0.80, 0.66, 0.51, and the combination of the two groups 0.88, 0.79, 0.77 for regions the whole tumor, tumor core, and enhancing region in the training dataset, respectively. The results related to Hussdorf Distance (HD) for HGG datasets were 8.24, 9.92, 4.43, LGG datasets 11.5, 11.31, 2.23, and the combination of the two groups 7.20, 8.82, 4.43 for regions the whole tumor, tumor core, and enhancing region in the training dataset, respectively. Conclusion: Using the U-Net network can help physicians in the accurate segmentation of the tumor and its various areas, as well as increase the survival rate of these patients and improve their quality of life through accurate diagnosis and early treatment.
منابع مشابه
BraTS Challenge Manuscripts
Deep Neural Networks (DNNs) are often successful in problems needing to extract information from complexe, high-dimensional inputs, for which useful features are not obvious to design. This paper presents our work on applying DNNs to brain tumor segmentation for the BRATS challenge. We are currently experimenting with several several DNN architectures, leveraging the recent advances in the fiel...
متن کاملAutomatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks
A major challenge in brain tumor treatment planning and quantitative evaluation is determination of the tumor extent. The noninvasive magnetic resonance imaging (MRI) technique has emerged as a front-line diagnostic tool for brain tumors without ionizing radiation. Manual segmentation of brain tumor extent from 3D MRI volumes is a very time-consuming task and the performance is highly relied on...
متن کاملP63: Automatic Detection of Glioblastoma Multiforme Tumors Using Magnetic Resonance Spectroscopy Data Based on Neural Network
Inflammation has been closely related to various forms of brain tumors. However, there is little knowledge about the role of inflammation in glioma. Grade IV glioma is formerly termed glioblastoma multiform (GBM). GBM is responsible for over 13,000 deaths per year in the America. Magnetic resonance imaging (MRI) is the most commonly used diagnostic method for GBM tumors. Recently, use of the MR...
متن کامل3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
This paper introduces a network for volumetric segmentation that learns from sparsely annotated volumetric images. We outline two attractive use cases of this method: (1) In a semi-automated setup, the user annotates some slices in the volume to be segmented. The network learns from these sparse annotations and provides a dense 3D segmentation. (2) In a fully-automated setup, we assume that a r...
متن کاملRecurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation
Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Co...
متن کاملassessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 80 شماره 4
صفحات 293- 299
تاریخ انتشار 2022-07
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023